3.92 \(\int \sec ^2(c+d x) \sqrt{a+a \sec (c+d x)} \, dx\)

Optimal. Leaf size=56 \[ \frac{2 \tan (c+d x) \sqrt{a \sec (c+d x)+a}}{3 d}+\frac{2 a \tan (c+d x)}{3 d \sqrt{a \sec (c+d x)+a}} \]

[Out]

(2*a*Tan[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0826257, antiderivative size = 56, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {3798, 3792} \[ \frac{2 \tan (c+d x) \sqrt{a \sec (c+d x)+a}}{3 d}+\frac{2 a \tan (c+d x)}{3 d \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2*Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*a*Tan[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

Rule 3798

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(Cot[e + f*x]*(a
 + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*m)/(b*(m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x
] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]

Rule 3792

Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*b*Cot[e + f*x])/
(f*Sqrt[a + b*Csc[e + f*x]]), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \sec ^2(c+d x) \sqrt{a+a \sec (c+d x)} \, dx &=\frac{2 \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{3 d}+\frac{1}{3} \int \sec (c+d x) \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{2 a \tan (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}+\frac{2 \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.0946142, size = 36, normalized size = 0.64 \[ \frac{2 a \tan (c+d x) (\sec (c+d x)+2)}{3 d \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2*Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*a*(2 + Sec[c + d*x])*Tan[c + d*x])/(3*d*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [A]  time = 0.141, size = 62, normalized size = 1.1 \begin{align*} -{\frac{4\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-2\,\cos \left ( dx+c \right ) -2}{3\,d\sin \left ( dx+c \right ) \cos \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(a+a*sec(d*x+c))^(1/2),x)

[Out]

-2/3/d*(2*cos(d*x+c)^2-cos(d*x+c)-1)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/sin(d*x+c)/cos(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

4/3*(3*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4)*sqrt(a)*d*integrate((((cos(6*d
*x + 6*c)*cos(2*d*x + 2*c) + 2*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(6*d*x + 6*c)*sin(2
*d*x + 2*c) + 2*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c))) + (cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 2*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(6*d*x + 6*c)*s
in(2*d*x + 2*c) - 2*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*c
os(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - ((cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 2*cos(2*d*x +
2*c)*sin(4*d*x + 4*c) - cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 2*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*cos(3/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 2*cos(4*d*x + 4*c)*cos(2*d*x +
2*c) + cos(2*d*x + 2*c)^2 + sin(6*d*x + 6*c)*sin(2*d*x + 2*c) + 2*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*
x + 2*c)^2)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c) + 1)))/(((2*(2*cos(4*d*x + 4*c) + cos(2*d*x + 2*c))*cos(6*d*x + 6*c) + cos(6*d*x + 6*c)^2 + 4*cos(4*d*x
 + 4*c)^2 + 4*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + 2*(2*sin(4*d*x + 4*c) + sin(2*d*x + 2*c
))*sin(6*d*x + 6*c) + sin(6*d*x + 6*c)^2 + 4*sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*
d*x + 2*c)^2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + (2*(2*cos(4*d*x + 4*c) + cos(2*d*x
+ 2*c))*cos(6*d*x + 6*c) + cos(6*d*x + 6*c)^2 + 4*cos(4*d*x + 4*c)^2 + 4*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + c
os(2*d*x + 2*c)^2 + 2*(2*sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + sin(6*d*x + 6*c)^2 + 4*sin(4*
d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c) + 1))^2)*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)), x) + sqrt(a)
*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2
*d*x + 2*c) + 1)^(3/4)*d)

________________________________________________________________________________________

Fricas [A]  time = 1.64511, size = 155, normalized size = 2.77 \begin{align*} \frac{2 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}{\left (2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )}{3 \,{\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2/3*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(2*cos(d*x + c) + 1)*sin(d*x + c)/(d*cos(d*x + c)^2 + d*cos(d*x +
c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )} \sec ^{2}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*sec(c + d*x)**2, x)

________________________________________________________________________________________

Giac [A]  time = 4.85203, size = 111, normalized size = 1.98 \begin{align*} \frac{2 \, \sqrt{2}{\left (a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 3 \, a^{2}\right )} \mathrm{sgn}\left (\cos \left (d x + c\right )\right ) \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{3 \,{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a\right )} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

2/3*sqrt(2)*(a^2*tan(1/2*d*x + 1/2*c)^2 - 3*a^2)*sgn(cos(d*x + c))*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*
c)^2 - a)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*d)